Page Nav

HIDE

Grid

GRID_STYLE

intro

Breaking News

latest

WHAT REALLY IS LEARNING? If we are to know if “significant learning

  WHAT REALLY IS LEARNING? If we are to know if “significant learning” is taking place in the classroom, we must be capable of recognizing i...


 


WHAT REALLY IS LEARNING? If we are to know if “significant learning” is taking place in the classroom, we must be capable of recognizing it when it occurs. If you look up the definition of “learn” in a dictionary, you will likely find the following: 1) to acquire knowledge of a subject or skill through education or experience, 2) to gain information about somebody or something, or 3) to memorize something, for example, facts, a poem, a piece of music, or a dance.


 This definition is not particularly insightful, although it reminds us that the word can be used to describe the acquisition of both knowledge and skill, and that acquisition can be by a variety of means, including education, experience, or memorization. Still, we are left without a clear understanding of what it means to “acquire knowledge or skill.” Other things that “we acquire” are obtained by physical means. How does this relate to learning? Are there different degrees of “acquisition” and, if so, do they represent equal types of learning? For example, is memorizing a fact the same as learning to interpret a complex text? How about learning to play a musical instrument? The Oxford English Dictionary also provides a definition that acknowledges the importance of teaching as a vehicle for learning, a welcome reminder for teachers. Taking a different view, Atkinson et al. (1993) describe learning as “a relatively permanent change in behavior that results from practice.


" Others (e.g., Simon 1996) have pointed out that the purpose of learning has recently shifted from being able to recall information (surface learning) to being able to find and use it (deep learning). Until several decades ago, most college teachers thought that teaching simply involved filling a student’s head with information. Knowledge was ‘transmitted’ from an authority (the teacher) to a learner (the student), generally by lecture. This thinking and practice are firmly entrenched in most classrooms despite the fact that the ineffectiveness of lecture-based teaching has been known for quite some time. Wirth & Perkins - Learning to Learn 11 A lecture is a process by which the notes of the professor become the notes of the students without passing through the minds of either R.K. Rathbun Modern cognitive psychology tells us that learning is a constructive, not receptive, process (Glaser 1991). This theory of learning (constructivism) holds that understanding comes through experiences and interaction with the environment, and that the learner uses a foundation of previous knowledge to construct new understanding. Consequently, the learner has primary responsibility for constructing knowledge and understanding, not the teacher. In a constructivist classroom, the teacher is no longer the “authority” but instead is a guide or facilitator who assists students in learning.


 According to Kolb (1984), the learning cycle begins when the learner interacts with the environment (concrete experience). Sensory information from this experience is integrated and compared with existing knowledge (reflective observation). New models, ideas, and plans for action are created from this information (abstract hypotheses), and finally new action is taken (active testing). The Kolb cycle is consistent with the earlier work of Piaget and others who pointed out that learning has both a concrete (active) and an abstract (intellectual) dimension (Figure 2). Within the brain, knowledge is organized and structured in networks of related concepts. Accordingly, new knowledge must connect to, or build upon a framework of existing knowledge (Zull 2002). Put simply, learning involves building mental models (schema) consisting of new and existing information. The richer the links between new and existing information, the deeper Figure 2. Kolb’s learning cycle. 12 Wirth & Perkins - Learning to Learn When Pablo Casals reached ninety-five, a young reporter asked him a question: "Mr. Casals, you are ninety-five and the greatest cellist who ever lived. Why do you still practice six hours a day?" Casals answered, "Because I think I’m making progress." the knowledge and the more readily it can be retrieved and applied in new situations. Building rich links involves an iterative process of building, testing, and refining schema that organizes knowledge into conceptual frameworks. If existing knowledge serves as a foundation for new learning, then it is also essential that existing misconceptions, preconceptions, and naive conceptions are acknowledged and corrected during the learning process. There are both ‘surface’ and ‘deep’ approaches to learning (Savin-Baden and Major 2004). Surface approaches to learning concentrate on memorization (Bloom’s lowest level: knowledge). In surface learning, the learner’s goal is often to complete required learning tasks by memorizing information needed for assessments. 


Surface learners mostly focus on facts without integration, they are generally unreflective, and they see learning tasks as external impositions. In contrast, students with deep approaches to learning have an intention to understand. They generally engage in vigorous interaction with content, relate new ideas to old ones, relate concepts to everyday experience, relate evidence to conclusions, and examine the logic of arguments. While doing this, they “construct” their own knowledge. Think for a minute about your own approaches to learning. Where do they fall between the surface and deep approaches described above? To what extent is learning enhanced or limited by genetics? Although natural talent is often considered to play a significant role in becoming an “expert,” even “talented” individuals must engage in significant practice to reach the master level (Ericsson et al. 1994). 


The single best measure of mastery in a subject is time spent intellectually engaged with that particular subject. For example, chess masters spend roughly 50,000 to 100,000 hours studying chess to reach the “expert” level of playing chess (Simon and Chase 1973). Stop. Re-read that sentence again. Think about it. Those are some big numbers. How big are they (you should be trying to reach a deeper level of understanding here)? Let’s do a quick calculation. An average of 75,000 hours means spending 8 hours per day, 365 days per year, for more than 25 years to become an accomplished chess player! That’s how long it takes to develop the necessary skills for recognizing patterns of chess pieces, understanding their implications for future outcomes, and making the best moves. No wonder spending just a few hours on a homework problem, or even a semester reading a textbook often fails to provide the level of understanding that we often desire. Clearly, significant learning requires major investments of time. Unfortunately, time on task alone does not guarantee that significant learning will occur.

No comments

Ads